m -Hypergeometric Solutions of Linear Recurrence and q-Recurrence Equations

Husam L. Saad Department of Mathematics, College of Science, Basrah University, Basrah, Iraq.

Abstract

In Koepf (1995), Koepf presents an algorithm to find an m-hypergeometric solution s_n of

$$S_{n+m} - S_n = a_n,$$

where a_n is a given m -hypergeometric term. We give a q -analogue of that algorithm. Also we generalize Koepf's algorithm to find m -hypergeometric solutions of linear recurrence equations without any restriction on the coefficients. Then we solve the same problem for linear q -recurrence equations.

Keywords: Gosper algorithm, m-hypergeometric solution, q-Gosper algorithm, qm-hypergeometric solution.

q- m-

$$s_n$$
 m- (1995)

$$s_{n+m} - s_n = a_n,$$

 a_n

m-

. q-

1. Introduction

Let m denotes a positive integer, \mathbb{N} be the set of natural numbers, K be the field of characteristic zero, K(n) be the field of rational functions over K, K[n] be the ring of polynomials over K, and F denotes the transcendental extension of K by the indeterminate q, i.e., F = K(q). In this paper, we will use x as an abbreviation for q^k . Recall that a non-zero term t_n is called a hypergeometric over K if there exist a rational function $r \in K(n)$ such that

$$\frac{t_{n+1}}{t_n} = r(n) .$$

Gosper's algorithm (Gosper, 1978) (see also Graham *et al.*, 1989, Koepf, 1998, Petkovšek *et al.*, 1996) has been extensively studied and widely used to prove hypergeometric identities. Given a hypergeometric term t_n , Gosper's algorithm is a procedure to find a hypergeometric term z_n satisfying

$$z_{n+1} - z_n = t_n, (1.1)$$

if it exists, or confirm the nonexistence of any solution of (1.1). A non-zero term a_n is called an m-hypergeometric over K if there exist a rational function $w(n) \in K(n)$ such that.

$$\frac{a_{n+m}}{a_n} = w(n) \,,$$

In Koepf (1995), Koepf extends Gosper's algorithm to find m-hypergeometric solution s_n of

$$S_{n+m} - S_n = a_n, (1.2)$$

where a_n is a given m -hypergeometric term. In Petkovšek and Bruno (1993), Petkovšek and Bruno described an algorithm to find m -hypergeometric solutions of the linear recurrence equation

$$\sum_{i=0}^{d} p_i s_{n+mi} = 0, (1.3)$$

where d is a positive integer and $\{p_i(n)\}_{i=0}^d$ are given polynomials over K. Their algorithm reduces to algorithm **Hyper** (Petkovšek, 1992) when m=1. Recall that a non-zero term h_k is called a q-hypergeometric over F if there exist a rational function $\sigma \in F(x)$ such that

$$\frac{h_{k+1}}{h_k} = \sigma(x).$$

q-Gosper's algorithm (see Böing and Koepf, 1999, Koornwinder, 1993, Paule and Riese, 1997, Paule and Strehl, 1995) determines if there exists a q-hypergeometric term anti-difference of a given q-hypergeometric term and computes this anti-difference provided that it exists. A non-zero term f_k is called a qm-hypergeometric over F if there exist a rational function $\rho \in F(x)$ such that

$$\frac{f_{k+m}}{f_k} = \rho(x).$$

The contents of this paper are as follows: In Section 2, we give a q-analogue of Koepf's algorithm. In Section 3, we show that Koepf's algorithm can be generalized to find m-hypergeometric solutions of non-homogenous linear recurrence equations without any restrictions on the coefficients. Finally, in Section 4, we solve the same problem in Section 3 for the q-case.

2. qm - Hypergeometric Solutions of Anti-Recurrence Equations

In this section, we give a q-analogue of Koepf's algorithm, i.e., find a qm-hypergeometric solution g_k of

$$g_{k+m} - g_k = f_k,$$
(2.1)

where f_k is a given qm-hypergeometric term.

Theorem 2.1. Given a qm-hypergeometric term f_k . If the equation

$$h_{k+1} - h_k = f_{km}, (2.2)$$

has a q-hypergeometric solution with respect to h_k , then equation (2.1) has a qm-hypergeometric solution with respect to g_k given by $g_k = h_{k/m}$, otherwise equation (2.1) has no qm-hypergeometric solution.

Proof. If g_k is a qm-hypergeometric solution of equation (2.1), then by using (2.1), we find

$$\frac{g_k}{f_k} = \frac{g_k}{g_{k+m} - g_k} = \frac{1}{\frac{g_{k+m}}{g_k} - 1}.$$

Let $\tau(x) = \frac{g_k}{f_k}$. It follows that $\tau(x)$ is a rational function of x. Substituting $\tau(x)f_k$ for g_k in (2.1) to obtain

$$\rho(x)\tau(q^k m) - \tau(x) = 1, \tag{2.3}$$

where $\rho(x) = \frac{f_{k+m}}{f_k}$ is a rational function of x. Analogously, from (2.2) we get

$$\rho(x^{m})\mu(qx) - \mu(x) = 1, \tag{2.4}$$

where $\mu(x) = \frac{h_k}{f_{km}}$ is a rational function of x. Clearly (2.3) and (2.4) are either both solvable and have solutions such that $\mu(x) = \tau(x^m)$, or are both unsolvable. So either (2.2) has no q-hypergeometric solution and (2.1) has no q-hypergeometric solution, or (2.2) has a q-hypergeometric solution $h_k = \mu(x) f_{km}$ and (2.1) has the desired solution.

Algorithm 2.1.

INPUT: $a \ qm$ -hypergeometric term f_k .

OUTPUT: a qm-hypergeometric solution g_k of (2.1) if it exists, otherwise "no qm-hypergeometric solution of (2.1) exists".

- (1) Compute the q-hypergeometric solution h_k of equation (2.2) if it exists, otherwis return "no qm-hypergeometric solution of (2.1) exists".
- (2) Compute the qm-hypergeometric solution g_k of equation (2.1) by the following relation:

$$g_k = h_{k/m}.$$

3. m - Hypergeometric Solutions of Linear Recurrence Equations

In this section, we generalize Koepf's algorithm to find m-hypergeometric solutions of the linear recurrence equation

$$\sum_{i=0}^{d} p_i(n) s_{n+mi} = a_n, \tag{3.1}$$

where $\{p_i(n)\}_{i=0}^d$ are given polynomials and a_n is a given m-hypergeometric term.

Theorem 3.1. Given an m-hypergeometric term a_n . If the equation

$$\sum_{i=0}^{d} p_{i}(mn)t_{n+i} = a_{mn} , \qquad (3.2)$$

has a hypergeometric solution with respect to t_n , then equation (3.1) has an m-hypergeometric solution with respect to s_n given by $s_n = t_{n/m}$, otherwise equation (3.1) has no m-hypergeometric solution.

Proof. If s_n is an m-hypergeometric solution of equation (3.1), then the left hand-side of (3.1) can

be written as a rational function multiple of s_n . Let $S(n) = \frac{s_n}{a_n}$. It follows that S(n) is a rational

function of n. Substituting $S(n)a_n$ for s_n in (3.1) to obtain

$$\sum_{i=0}^{d} p_i(n)S(n+mi) \prod_{j=0}^{i-1} w(n+mj) = 1,$$
(3.3)

where $w(n) = \frac{a_{n+m}}{a_n}$ is a rational function of n. Analogously, from (3.2) we get

$$\sum_{i=0}^{d} p_i(mn)T(n+i)\prod_{j=0}^{i-1} w(m(n+i)) = 1,$$
(3.4)

where $T(n) = \frac{t_n}{a_{mn}}$ is a rational function of n. Clearly (3.3) and (3.4) are either both solvable and have solutions such that T(n) = S(mn), or are both unsolvable. So either (3.2) has no hypergeometric solution and (3.1) has no m-hypergeometric solution, or (3.2) has a hypergeometric solution $t_n = T(n)a_{mn}$ and (3.1) has the desired solution.

Algorithm 3.1.

INPUT: $\{p_i(n)\}_{i=0}^d \in K[n]$ and an m-hypergeometric term a_n . OUTPUT: an m-hypergeometric solution s_n of (3.1), if it exists, otherwise "no m-hypereometric solution of (3.1) exists".

(1) Compute the hypergeometric solution t_n of equation (3.2) if it exists, otherwise return "no m-hypergeometric solution of (3.1) exists".

(2) Compute the m-hypergeometric solution s_n of equation (3.1) by the following relation:

$$S_n = t_{n/m}$$
.

Example 3.1. We want to find all 2-hypergeometric solutions of

$$s_{n+4} + (n^3 + 15n^2 + 3)s_{n+2} - n(n+5)(n+10)s_n = 4 - 50n.$$
 (3.5)

By equation (3.2), t_n is a hypergeometri term, which satisfies

$$t_{n+2} + (8n^3 + 60n^2 + 3)t_{n+1} - 2n(2n+5)(2n+10)t_n = 4 - 100n$$
.

The only hypergeometric solution of this equation is $t_n = 1$. Thus $s_n = t_{\frac{n}{2}} = 1$ is the only 2 -hypergeometric solution of (3.5).

4. qm-Hypergeometric Solutions of Linear q-Recurrence Equations

We present an algorithm to find a qm-hypergeometric term g_k satisfying

$$\sum_{i=0}^{d} \lambda_{i}(x) g_{k+mi} = f_{k}, \tag{4.1}$$

where $\{\lambda_i(x)\}_{i=0}^d$ are given polynomials and f_k is a given qm-hypergeometric term. This algorithm is a generalization of the one given in Section 2. Also, it is a q-analogue of the one given in Section 3.

Theorem 4.1. Given a qm-hypergeometric term f_k . If the equation

$$\sum_{i=0}^{d} \lambda_i(x^m) h_{k+i} = f_{km}, \tag{4.2}$$

has a q-hypergeometric solution with respect to h_k , then equation (4.1) has a qm-hypergeometric solution with respect to g_k given by $g_k = h_{k/m}$, otherwise equation (4.1) has no qm-hypergeometric solution.

Proof. Let $\tau(x)$, $\rho(x)$, $\mu(x)$ be defined as in Section 2. It follows that $\rho(x)$ is a rational function of x. If g_k is a qm-hypergeometric solution of equation (4.1), then the left hand-side of (4.1) can be written as a rational function multiple of g_k . It follows that $\tau(x)$ is a rational function of x. Substituting $\tau(x)f_k$ for g_k in (4.1) to obtain

$$\sum_{i=0}^{d} \lambda_i(x) \tau(q^{mi}x) \prod_{j=0}^{i-1} \rho(q^{mj}x) = 1.$$
 (4.3)

Analogously, from (4.2) we get

$$\sum_{i=0}^{d} \lambda_i(x^m) \mu(q^i x) \prod_{j=0}^{i-1} \rho(q^{mj} x^m) = 1, \tag{4.4}$$

where $\mu(x)$ is a rational function of x. Clearly (4.3) and (4.4) are either both solvable and have

solutions such that $\mu(x) = \tau(x^m)$, or are both unsolvable. So either (4.2) has no q-hypergeometric solution and (4.1) has no qm-hypergeometric solution, or (4.2) has a q-hypergeometric solution $h_k = \mu(x) f_{km}$ and (4.1) has the desired solution.

Algorithm 4.1.

INPUT: $\{\lambda_i(x)\}_{i=0}^d \in F[x]$ and a qm-hypergeometric term f_k . OUTPUT: a qm-hypergeometric solution g_k of (4.1) if it exists, otherwise "no qm-hypergeometric solution of (4.1) exists".

- (1) Compute the q-hypergeometric solution h_k of equation (4.2) if it exists, otherwise return "no qm-hypergeometric solution of (4.1) exists".
- (2) Compute the qm-hypergeometric solution g_k of equation (4.1) by the following relation:

$$g_k = h_{k/m}$$
.

References

- [1] Böing, H. and Koepf, W. (1999). Algorithms for *q* -hypergeometric summation in computer algebra, *J. Symbolic Computation*, **28**, 777-799.
- [2] Gosper, R.W. Jr. (1978). Decision procedure for infinite hypergeometric summation, *Proc. Natl. Acad. Sci. USA*, **75**, 40-42.
- [3] Graham, R.L., Knuth, D.E. and Patashnik, O. (1989). *Concrete Mathematics -- A Foundation for Computer Science*, Reading: Adision-Weseley.

- [4] Koepf, W. (1995). Algorithms for m-fold hypergeometric summation, *J. Symbolic Computation*, **20**, 399-417.
- [5] Koepf, W. (1998). Hypergeometric Summation, Vieweg, Braunschweig/Wiesbaden.
- [6] Koornwinder, T.H. (1993). On Zeilberger's algorithm and its q-analogue: a rigorous description, J. Symbolic Computation, 48, 93-111.
- [7] Paule, P. and Riese, A. (1997). A Mathematica q-analogue of Zeilberger's algorithm based on an algebraically motivated approach to q-hypergeometric telescoping. In: Ismail, M.E.H., Masson, D.R., Rahman, M. (Eds.), Special Functions, q-Series and Related Topics. Fields Inst. Commun., **14**, American Mathematical Society, Providence, RI, 179-210.
- [8] Paule, P. and Strehl, V. (1995). Symbolic summation -- some recent developments, RISC Linz Report Series 95-11, Johannes Kepler University, Linz. *Computer Algebra in Science and Engineering -- Algorithms, Systems, and Applications*, J. Fleischer, J. Grabmeier, F. Hehl, W. Küchlin (eds.), World Scientific, Singapore.
- [9] Petkovšek, M. (1992). Hypergeometric solutions of linear recurrences with polynomial coefficients, *J. Symbolic Computation*, **14**, 243-264.
- [10] Petkovšek, M. and Bruno, S. (1993). Finding all hypergeometric solutions of linear differential equations, *Proc. ISSAC'93*, ACM Press, 27-33.
- [11] Petkovšek, M., Wilf, H.S. and Zeilberger, D. (1996). A=B. A. K. Peters.

