m-Hypergeometric Solutions of Linear Recurrence and q-Recurrence Equations

Husam L. Saad
Department of Mathematics, College of Science, Basrah University, Basrah, Iraq.

Abstract

In Koepf (1995), Koepf presents an algorithm to find an m-hypergeometric solution s_{n} of $$
s_{n+m}-s_{n}=a_{n},
$$ where a_{n} is a given m-hypergeometric term. We give a q-analogue of that algorithm. Also we generalize Koepf's algorithm to find m-hypergeometric solutions of linear recurrence equations without any restriction on the coefficients. Then we solve the same problem for linear q-recurrence equations.

Keywords : Gosper algorithm, m-hypergeometric solution, q-Gosper algorithm, qm -hypergeometric solution.

q- الحللو الهلبرجيومتربة-m لالمعادلات التكراربة والمعلدلات التكراربة

الظلاصa
في كوف (1995)، قوم كوف خوارزمية لايجاد الحلول الهايبرجبيومترية - s_{n} للمعادلة

$$
s_{n+m}-s_{n}=a_{n},
$$

 خوارزمية كوف لايجاد الحلول الهايبرجيومترية -m المعادلات النكرارية الظطية بدون اي قيود على المعلملات. ڤُ نط فس المسألة للمعدلات النكرارية - النطية.

1. Introduction

Let m denotes a positive integer, \mathbb{N} be the set of natural numbers, K be the field of characteristic zero, $K(n)$ be the field of rational functions over $K, K[n]$ be the ring of polynomials over K, and F denotes the transcendental extension of K by the indeterminate q, i.e., $F=K(q)$. In this paper, we will use x as an abbreviation for q^{k}. Recall that a non-zero term t_{n} is called a hypergeometric over K if there exist a rational function $r \in K(n)$ such that

$$
\frac{t_{n+1}}{t_{n}}=r(n) .
$$

Gosper's algorithm (Gosper, 1978) (see also Graham et al., 1989, Koepf, 1998, Petkovšek et al., 1996) has been extensively studied and widely used to prove hypergeometric identities. Given a hypergeometric term t_{n}, Gosper's algorithm is a procedure to find a hypergeometric term z_{n} satisfying

$$
\begin{equation*}
z_{n+1}-z_{n}=t_{n}, \tag{1.1}
\end{equation*}
$$

if it exists, or confirm the nonexistence of any solution of (1.1). A non-zero term a_{n} is called an m-hypergeometric over K if there exist a rational function $w(n) \in K(n)$ such that.

$$
\frac{a_{n+m}}{a_{n}}=w(n),
$$

In Koepf (1995), Koepf extends Gosper's algorithm to find m-hypergeometric solution s_{n} of

$$
\begin{equation*}
s_{n+m}-s_{n}=a_{n}, \tag{1.2}
\end{equation*}
$$

where a_{n} is a given m-hypergeometric term. In Petkovšek and Bruno (1993), Petkovšek and Bruno described an algorithm to find m-hypergeometric solutions of the linear recurrence equation

$$
\begin{equation*}
\sum_{i=0}^{d} p_{i} s_{n+m i}=0, \tag{1.3}
\end{equation*}
$$

where d is a positive integer and $\left\{p_{i}(n)\right\}_{i=0}^{d}$ are given polynomials over K. Their algorithm reduces to algorithm Hyper (Petkovšek, 1992) when $m=1$. Recall that a non-zero term h_{k} is called a q-hypergeometric over F if there exist a rational function $\sigma \in F(x)$ such that

$$
\frac{h_{k+1}}{h_{k}}=\sigma(x) .
$$

q-Gosper's algorithm (see Böing and Koepf, 1999, Koornwinder, 1993, Paule and Riese, 1997, Paule and Strehl, 1995) determines if there exists a q-hypergeometric term anti-difference of a given q-hypergeometric term and computes this antidifference provided that it exists. A non-zero term f_{k} is called a $q m$-hypergeometric over F if there exist a rational function $\rho \in F(x)$ such that

$$
\frac{f_{k+m}}{f_{k}}=\rho(x) .
$$

The contents of this paper are as follows: In Section 2, we give a q-analogue of Koepf's algorithm. In Section 3, we show that Koepf's algorithm can be generalized to find m-hypergeometric solutions of non-homogenous linear recurrence equations without any restrictions on the coefficients. Finally, in Section 4, we solve the same problem in Section 3 for the q-case.

2. qm -Hypergeometric Solutions of Anti-Recurrence Equations

In this section, we give a q-analogue of Koepf's algorithm, i.e., find a $q m$ hypergeometric solution g_{k} of

$$
\begin{equation*}
g_{k+m}-g_{k}=f_{k}, \tag{2.1}
\end{equation*}
$$

where f_{k} is a given $q m$-hypergeometric term.

Theorem 2.1. Given a qm -hypergeometric term f_{k}. If the equation

$$
\begin{equation*}
h_{k+1}-h_{k}=f_{k m}, \tag{2.2}
\end{equation*}
$$

has a q-hypergeometric solution with respect to h_{k}, then equation (2.1) has a qmhypergeometric solution with respect to g_{k} given by $g_{k}=h_{k / m}$, otherwise equation (2.1) has no qm -hypergeometric solution.

Proof. If g_{k} is a $q m$-hypergeometric solution of equation (2.1), then by using (2.1), we find

$$
\frac{g_{k}}{f_{k}}=\frac{g_{k}}{g_{k+m}-g_{k}}=\frac{1}{\frac{g_{k+m}}{g_{k}}-1} .
$$

Let $\tau(x)=g_{k} / f_{k}$. It follows that $\tau(x)$ is a rational function of x. Substituting $\tau(x) f_{k}$ for g_{k} in (2.1) to obtain

$$
\begin{equation*}
\rho(x) \tau\left(q^{k} m\right)-\tau(x)=1, \tag{2.3}
\end{equation*}
$$

where $\rho(x)=f_{k+m} / f_{k}$ is a rational function of x. Analogously, from (2.2) we get

$$
\begin{equation*}
\rho\left(x^{m}\right) \mu(q x)-\mu(x)=1, \tag{2.4}
\end{equation*}
$$

where $\mu(x)=h_{k} / f_{k m}$ is a rational function of x. Clearly (2.3) and (2.4) are either both solvable and have solutions such that $\mu(x)=\tau\left(x^{m}\right)$, or are both unsolvable. So either (2.2) has no q-hypergeometric solution and (2.1) has no $q m$-hypergeometric solution, or (2.2) has a q-hypergeometric solution $h_{k}=\mu(x) f_{k m}$ and (2.1) has the desired solution.

Algorithm 2.1.

INPUT : a qm-hypergeometric term f_{k}.
OUTPUT : a qm -hypergeometric solution g_{k} of (2.1) if it exists, otherwise "no qm hypergeometric solution of (2.1) exists".
(1) Compute the q-hypergeometric solution h_{k} of equation (2.2) if it exists, otherwis return "no qm -hypergeometric solution of (2.1) exists".
(2) Compute the qm -hypergeometric solution g_{k} of equation (2.1) by the following relation:

$$
g_{k}=h_{k / m} .
$$

3. m-Hypergeometric Solutions of Linear Recurrence Equations

In this section, we generalize Koepf's algorithm to find m-hypergeometric solutions of the linear recurrence equation

$$
\begin{equation*}
\sum_{i=0}^{d} p_{i}(n) s_{n+m i}=a_{n}, \tag{3.1}
\end{equation*}
$$

where $\left\{p_{i}(n)\right\}_{i=0}^{d}$ are given polynomials and a_{n} is a given m-hypergeometric term.

Theorem 3.1. Given an m-hypergeometric term a_{n}. If the equation

$$
\begin{equation*}
\sum_{i=0}^{d} p_{i}(m n) t_{n+i}=a_{m n} \tag{3.2}
\end{equation*}
$$

has a hypergeometric solution with respect to t_{n}, then equation (3.1) has an m hypergeometric solution with respect to s_{n} given by $s_{n}=t_{n / m}$, otherwise equation (3.1) has no m-hypergeometric solution.

Proof. If s_{n} is an m-hypergeometric solution of equation (3.1), then the left handside of (3.1) can
be written as a rational function multiple of s_{n}. Let $S(n)=s_{n} / a_{n}$. It follows that $S(n)$ is a rational
function of n. Substituting $S(n) a_{n}$ for s_{n} in (3.1) to obtain

$$
\begin{equation*}
\sum_{i=0}^{d} p_{i}(n) S(n+m i) \prod_{j=0}^{i-1} w(n+m j)=1, \tag{3.3}
\end{equation*}
$$

where $w(n)=a_{n+m} / a_{n}$ is a rational function of n. Analogously, from (3.2) we get

$$
\begin{equation*}
\sum_{i=0}^{d} p_{i}(m n) T(n+i) \prod_{j=0}^{i-1} w(m(n+i))=1, \tag{3.4}
\end{equation*}
$$

where $T(n)=t_{n} / a_{m n}$ is a rational function of n. Clearly (3.3) and (3.4) are either both solvable and have solutions such that $T(n)=S(m n)$, or are both unsolvable. So either (3.2) has no hypergeometric solution and (3.1) has no m-hypergeometric solution, or (3.2) has a hypergeometric solution $t_{n}=T(n) a_{m n}$ and (3.1) has the desired solution.

Algorithm 3.1.

INPUT : $\left\{p_{i}(n)\right\}_{i=0}^{d} \in K[n]$ and an m-hypergeometric term a_{n}.
OUTPUT : an m-hypergeometric solution s_{n} of (3.1), if it exists, otherwise "no mhypereometric solution of (3.1) exists".
(1) Compute the hypergeometric solution t_{n} of equation (3.2) if it exists, otherwise return "no m-hypergeometric solution of (3.1) exists".
(2) Compute the m-hypergeometric solution s_{n} of equation (3.1) by the following relation:

$$
s_{n}=t_{n / m} .
$$

Example 3.1. We want to find all 2 -hypergeometric solutions of

$$
\begin{equation*}
s_{n+4}+\left(n^{3}+15 n^{2}+3\right) s_{n+2}-n(n+5)(n+10) s_{n}=4-50 n . \tag{3.5}
\end{equation*}
$$

By equation (3.2), t_{n} is a hypergeometri term, which satisfies

$$
t_{n+2}+\left(8 n^{3}+60 n^{2}+3\right) t_{n+1}-2 n(2 n+5)(2 n+10) t_{n}=4-100 n .
$$

The only hypergeometric solution of this equation is $t_{n}=1$. Thus $s_{n}=t_{n / 2}=1$ is the $\begin{array}{llll}\text { only } & 2 & \text {-hypergeometric solution of }\end{array}$

4. $q m$-Hypergeometric Solutions of Linear q-Recurrence Equations

We present an algorithm to find a $q m$-hypergeometric term g_{k} satisfying

$$
\begin{equation*}
\sum_{i=0}^{d} \lambda_{i}(x) g_{k+m i}=f_{k}, \tag{4.1}
\end{equation*}
$$

where $\left\{\lambda_{i}(x)\right\}_{i=0}^{d}$ are given polynomials and f_{k} is a given $q m$-hypergeometric term. This algorithm is a generalization of the one given in Section 2. Also, it is a q analogue of the one given in Section 3.

Theorem 4.1. Given a qm-hypergeometric term f_{k}. If the equation

$$
\begin{equation*}
\sum_{i=0}^{d} \lambda_{i}\left(x^{m}\right) h_{k+i}=f_{k m}, \tag{4.2}
\end{equation*}
$$

has a q-hypergeometric solution with respect to h_{k}, then equation (4.1) has a qmhypergeometric solution with respect to g_{k} given by $g_{k}=h_{k / m}$, otherwise equation (4.1) has no qm -hypergeometric solution.

Proof. Let $\tau(x), \rho(x), \mu(x)$ be defined as in Section 2. It follows that $\rho(x)$ is a rational function of x. If g_{k} is a $q m$-hypergeometric solution of equation (4.1), then the left hand-side of (4.1) can be written as a rational function multiple of g_{k}. It follows that $\tau(x)$ is a rational function of x. Substituting $\tau(x) f_{k}$ for g_{k} in (4.1) to obtain

$$
\begin{equation*}
\sum_{i=0}^{d} \lambda_{i}(x) \tau\left(q^{m i} x\right) \prod_{j=0}^{i-1} \rho\left(q^{m j} x\right)=1 . \tag{4.3}
\end{equation*}
$$

Analogously, from (4.2) we get

$$
\begin{equation*}
\sum_{i=0}^{d} \lambda_{i}\left(x^{m}\right) \mu\left(q^{i} x\right) \prod_{j=0}^{i-1} \rho\left(q^{m j} x^{m}\right)=1, \tag{4.4}
\end{equation*}
$$

where $\mu(x)$ is a rational function of x. Clearly (4.3) and (4.4) are either both solvable and have
solutions such that $\mu(x)=\tau\left(x^{m}\right)$, or are both unsolvable. So either (4.2) has no q hypergeometric solution and (4.1) has no $q m$-hypergeometric solution, or (4.2) has a q-hypergeometric solution $h_{k}=\mu(x) f_{k m}$ and (4.1) has the desired solution.

Algorithm 4.1.

INPUT $:\left\{\lambda_{i}(x)\right\}_{i=0}^{d} \in F[x]$ and a qm -hypergeometric term f_{k}.
OUTPUT: a qm -hypergeometric solution g_{k} of (4.1) if it exists, otherwise "no qm hypergeometric solution of (4.1) exists".
(1) Compute the q-hypergeometric solution h_{k} of equation (4.2) if it exists, otherwise return "no qm -hypergeometric solution of (4.1) exists".
(2) Compute the qm -hypergeometric solution g_{k} of equation (4.1) by the following relation:

$$
g_{k}=h_{k / m} .
$$

References

[1] Böing, H. and Koepf, W. (1999). Algorithms for q-hypergeometric summation in computer algebra, J. Symbolic Computation, 28, 777-799.
[2] Gosper, R.W. Jr. (1978). Decision procedure for infinite hypergeometric summation, Proc. Natl. Acad. Sci. USA, 75, 40-42.
[3] Graham, R.L., Knuth, D.E. and Patashnik, O. (1989). Concrete Mathematics -- A Foundation for Computer Science, Reading: Adision-Weseley.
[4] Koepf, W. (1995). Algorithms for m-fold hypergeometric summation, J. Symbolic Computation, 20, 399-417.
[5] Koepf, W. (1998). Hypergeometric Summation, Vieweg, Braunschweig/Wiesbaden.
[6] Koornwinder, T.H. (1993). On Zeilberger's algorithm and its q-analogue: a rigorous description, J. Symbolic Computation, 48, 93-111.
[7] Paule, P. and Riese, A. (1997). A Mathematica q-analogue of Zeilberger's algorithm based on an algebraically motivated approach to q-hypergeometric telescoping. In: Ismail, M.E.H., Masson, D.R., Rahman, M. (Eds.), Special Functions, q-Series and Related Topics. Fields Inst. Commun., 14, American Mathematical Society, Providence, RI, 179-210.
[8] Paule, P. and Strehl, V. (1995). Symbolic summation -- some recent developments, RISC Linz Report Series 95-11, Johannes Kepler University, Linz. Computer Algebra in Science and Engineering -- Algorithms, Systems, and Applications, J. Fleischer, J. Grabmeier, F. Hehl, W. Küchlin (eds.), World Scientific, Singapore.
[9] Petkovšek, M. (1992). Hypergeometric solutions of linear recurrences with polynomial coefficients, J. Symbolic Computation, 14, 243-264.
[10] Petkovšek, M. and Bruno, S. (1993). Finding all hypergeometric solutions of linear differential equations, Proc. ISSAC'93, ACM Press, 27-33.
[11] Petkovšek, M., Wilf, H.S. and Zeilberger, D. (1996). A=B. A. K. Peters.

