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Abstract

In Koepf (1995), Koepf presents an algorithm to find an m -hypergeometric
solution s, of

where a, 1s a given m -hypergeometric term. We give a ( -analogue of that

algorithm. Also we generalize Koepf's algorithm to find m -hypergeometric solutions
of linear recurrence equations without any restriction on the coefficients. Then we
solve the same problem for linear ( -recurrence equations.

Keywords : Gosper algorithm, m -hypergeometric solution, ¢ -Gosper algorithm,
gm -hypergeometric solution.
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1. Introduction

Let m denotes a positive integer, N be the set of natural numbers, K be the field of
characteristic zero, K(n) be the field of rational functions over K, K[n]be the ring of

polynomials over K, and F denotes the transcendental extension of K by the
indeterminate (, i.e., F =K (). In this paper, we will use X as an abbreviation for

q“. Recall that a non-zero term t, is called a hypergeometric over K if there exist a
rational function r € K(n) such that

tn+1
—=1r(n).
" (M)

n

Gosper's algorithm (Gosper, 1978) (see also Graham et al., 1989, Koepf, 1998,
Petkovsek et al., 1996) has been extensively studied and widely used to prove
hypergeometric identities. Given a hypergeometric term t , Gosper's algorithm is a

procedure to find a hypergeometric term z, satisfying
Zn+1 _Zn :tna (11)

if it exists, or confirm the nonexistence of any solution of (1.1). A non-zero term a, is
called an m -hypergeometric over K if there exist a rational function w(n) e K(n)
such that.

a
n+m _ W(n) ,
a

n

In Koepf (1995), Koepf extends Gosper's algorithm to find m -hypergeometric
solution s of

=a,, (1.2)

where a, is a given m -hypergeometric term. In PetkovSek and Bruno (1993),

Petkovsek and Bruno described an algorithm to find m -hypergeometric solutions of
the linear recurrence equation

i pisn+mi = O’ (13)

i=0
where d is a positive integer and {pi(n)}?zo are given polynomials over K. Their

algorithm reduces to algorithm Hyper (Petkovsek, 1992) when m =1. Recall that a
non-zero term h, is called a  -hypergeometric over F if there exist a rational

function o € F(X) such that
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—*1L = 5(X).
. o(X)

k

q-Gosper's algorithm (see Boing and Koepf, 1999, Koornwinder, 1993, Paule and
Riese, 1997, Paule and Strehl, 1995) determines if there exists a (-hypergeometric
term anti-difference of a given ( -hypergeometric term and computes this anti-
difference provided that it exists. A non-zero term f, is called a gm -hypergeometric
over F if there exist a rational function p € F(X) such that

fk+m

k

The contents of this paper are as follows: In Section 2, we give a (-analogue of

Koepf's algorithm. In Section 3, we show that Koepf's algorithm can be generalized to
find m -hypergeometric solutions of non-homogenous linear recurrence equations
without any restrictions on the coefficients. Finally, in Section 4, we solve the same
problem in Section 3 for the q -case.

2. gm -Hypergeometric Solutions of Anti-Recurrence Equations

In this section, we give a ( -analogue of Koepf's algorithm, i.e., find a gm -
hypergeometric solution g, of

Jem — 9k = Fi
2.1)
where f, isa given gm -hypergeometric term.
Theorem 2.1. Given a gm -hypergeometric term f, . If the equation
h. —h ="f., (2.2)

has a q-hypergeometric solution with respect to h, , then equation (2.1) has a gm -
hypergeometric solution with respect to g, given by g, =h,,, , otherwise equation
(2.1) has no gm -hypergeometric solution.

Proof. If g, is a gm -hypergeometric solution of equation (2.1), then by using (2.1),

we find
fk Okem — Y M_l
Oy
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Let 7(x) = g% . It follows that 7(X) is a rational function of X . Substituting
k

7(x) f, for g, in (2.1) to obtain
P()z(q“m)—7(x) =1, (2.3)

where p(X) = fk*% is a rational function of X . Analogously, from (2.2) we get
k

P(X™) p(Ox) — p(x) =1, 24

where u(X) = % is a rational function of X . Clearly (2.3) and (2.4) are either both
km

solvable and have solutions such that z(x) = z(x™), or are both unsolvable. So either
(2.2) has no (-hypergeometric solution and (2.1) has no gm -hypergeometric solution,
or (2.2) has a q -hypergeometric solution h, = u(x)f,,, and (2.1) has the desired

solution. O

Algorithm 2.1.
INPUT : a gm-hypergeometric term f, .

OUTPUT : a gm -hypergeometric solution g, of (2.1) if it exists, otherwise “no gqm -
hypergeometric solution of (2.1) exists”.

(1) Compute the q-hypergeometric solution h, of equation (2.2) if it exists, otherwis
return  “no gm -hypergeometric solution of (2.1) exists”.

(2) Compute the gm -hypergeometric solution g, of equation (2.1) by the following
relation:

0 :hk/m'

3. m -Hypergeometric Solutions of Linear Recurrence Equations

In this section, we generalize Koepf's algorithm to find m -hypergeometric solutions
of the linear recurrence equation

Z P (n)smmi =4a,, (31)

where {pi (n)}id:0 are given polynomials and a, is a given m -hypergeometric term.
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Theorem 3.1. Given an m -hypergeometric term a,, . If the equation

i pi (mn)tm-i = amn > (32)

has a hypergeometric solution with respect to t,, then equation (3.1) has an m -
hypergeometric solution with respect to s, given by s, =t otherwise equation

n/m 1

(3.1) has no m -hypergeometric solution.

Proof. If s, is an m -hypergeometric solution of equation (3.1), then the left hand-
side of (3.1) can

be written as a rational function multiple of s, . Let S(n) = % . It follows that S(n)

n

1s a rational

function of n. Substituting S(n)a, for s, in (3.1) to obtain

d i—1
D pi(mS+mi)[ [wn+mj) =1, (3.3)
i=0 j=0
where w(n) = a”*% is a rational function of n. Analogously, from (3.2) we get
d i—1
D p(mmT(n+ D] [wm(n+i) =1, (3.4)
i=0 =0

where T(n) = % is a rational function of n. Clearly (3.3) and (3.4) are either both

solvable and have solutions such that T (n) = S(mn), or are both unsolvable. So either
(3.2) has no hypergeometric solution and (3.1) has no m -hypergeometric solution, or
(3.2) has a hypergeometric solution t, =T(n)a,,, and (3.1) has the desired solution.

O

Algorithm 3.1.

INPUT : {p;(n)};, € K[n] and an m-hypergeometric term a, .

OUTPUT : an m -hypergeometric solution s of (3.1), if it exists, otherwise “no m -
hypereometric solution of (3.1) exists”.

(1) Compute the hypergeometric solution t, of equation (3.2) if it exists, otherwise
return “no m -hypergeometric solution of (3.1) exists”.
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(2) Compute the m -hypergeometric solution s, of equation (3.1) by the following
relation:

Example 3.1. We want to find all 2 -hypergeometric solutions of

Sy, +(N° +150% +3)s, , —n(n+5)(n+10)s, =4-50n. (3.5)

n+2

By equation (3.2), t, is a hypergeometri term, which satisfies

t,., +(8n° +60n* +3)t, ., —2n(2n+5)(2n+10)t, =4-100n.

n+l1

The only hypergeometric solution of this equation is t, =1. Thus s, :ty =1 is the
2

only 2 -hypergeometric solution of (3.5).
O

4. gm -Hypergeometric Solutions of Linear g-Recurrence Equations

We present an algorithm to find a gm -hypergeometric term g, satisfying
d
Zﬂ’i ) Giemi = fis (4.1)
i=0

where {/Ii (X)}idzo are given polynomials and f, is a given gm -hypergeometric term.
This algorithm is a generalization of the one given in Section 2. Also, itis a Q-
analogue of the one given in Section 3.

Theorem 4.1. Given a gm -hypergeometric term f, . If the equation

Zd:/ii(xm)hkq = fims (4.2)

has a q-hypergeometric solution with respect to h, , then equation (4.1) has a gm -
hypergeometric solution with respect to g, givenby g, =h /o otherwise equation

K
m

(4.1).has.no.gm.-hypergeometric solution.

79

www.manaraa.com



Basrah Journal of Scienec (A) Vol.24(1),74-81, 2006

Proof. Let 7(x), o(X), #(X) be defined as in Section 2. It follows that p(X) is a
rational function of X. If g, is a qm -hypergeometric solution of equation (4.1), then
the left hand-side of (4.1) can be written as a rational function multiple of g, . It
follows that 7(X) is a rational function of X . Substituting z(x) f, for g, in (4.1) to
obtain

d ol )
2 A4007@" 0 (@™ =1. (4.3)

i=0

Analogously, from (4.2) we get

> A M u@ [ p@xm) =1, (44)

j=0

where u(X) is a rational function of X . Clearly (4.3) and (4.4) are either both solvable
and have

solutions such that z(x)=7(x"), or are both unsolvable. So either (4.2) has no Q-
hypergeometric solution and (4.1) has no gm -hypergeometric solution, or (4.2) has a
q -hypergeometric solution h, = u(x)f,,, and (4.1) has the desired solution.
i

Algorithm 4.1.
INPUT  : {4 (x)}{, € F[x] and a gm -hypergeometric term f, .
OUTPUT: a gm -hypergeometric solution g, of (4.1) if it exists, otherwise “no gm -

hypergeometric solution of (4.1) exists”.
(1) Compute the g -hypergeometric solution h, of equation (4.2) if it exists,

otherwise return “no gm -hypergeometric solution of (4.1) exists”.
(2) Compute the gm -hypergeometric solution g, of equation (4.1) by the following
relation:

gk = h%
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